The Discrete Fundamental Group of the Associahedron
نویسندگان
چکیده
The associahedron is an object that has been well studied and has numerous applications, particularly in the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster algebras. We approach the associahedron from the point of view of discrete homotopy theory, that is we consider 5-cycles in the 1-skeleton of the associahedron to be combinatorial holes, but 4-cycles to be contractible. We give a simple description of the equivalence classes of 5-cycles in the 1-skeleton and then identify a set of 5-cycles from which we may produce all other cycles. This set of 5-cycle equivalence classes turns out to be the generating set for the abelianization of the discrete fundamental group of the associahedron. In this paper we provide presentations for the discrete fundamental group and the abelianization of the discrete fundamental group. We also discuss applications to cluster algebras as well as generalizations to type B and D associahedra. Résumé. L’associahèdre est un objet bien etudié que l’on retrouve dans plusieurs contextes. Par exemple, il est associé à la théorie des opérades, à l’étude des partitions non-croisées, à la théorie des treillis et plus récemment aux algèbres dámas. Nous étudions cet objet par le biais de la théorie des homotopies discretes. En bref cette théorie signifie qu’un cycle de longueur 5 (sur le squelette de l’associahèdre) est considéré comme étant le bord d’un trou combinatoire, alors qu’un cycle de longueur 4 peut être contracté sans problème. Les classes d’homotopies discrètes sont donc des classes d’équivalence de cycles de longueurs 5. Nous donnons une description simple de ces classes d’équivalence et identifions un ensemble de générateurs du groupe correspondant (abélien) d’homotopies discrètes. Nous d’ecrivons également les liens entre notre construction et les algèbres d’amas.
منابع مشابه
The discrete Fundamental Group of the Associahedron, and the Exchange Module
The associahedron is an object that has been well studied and has numerous applications, particularly in the theory of operads, the study of non-crossing partitions, lattice theory and more recently in the study of cluster algebras. We approach the associahedron from the point of view of discrete homotopy theory. We study the abelianization of the discrete fundamental group, and show that it is...
متن کاملFrom Permutahedron to Associahedron
For each finite real reflection group W , we identify a copy of the type-W simplicial generalised associahedron inside the corresponding simplicial permutahedron. This defines a bijection between the facets of the generalised associahedron and the elements of the type W non-crossing partition lattice which is more tractable than previous such bijections. We show that the simplicial fan determin...
متن کاملMinkowski Decomposition of Associahedra and Related Combinatorics
Realisations of associahedra with linear non-isomorphic normal fans can be obtained by alteration of the right-hand sides of the facet-defining inequalities from a classical permutahedron. These polytopes can be expressed as Minkowski sums and differences of dilated faces of a standard simplex as described by Ardila, Benedetti & Doker (2010). The coefficients yI of such a Minkowski decompositio...
متن کاملSome results of semilocally simply connected property
If we consider some special conditions, we can assume fundamental group of a topological space as a new topological space. In this paper, we will present a number of theorems in topological fundamental group related to semilocally simply connected property for a topological space.
متن کاملDouble-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009